DEEP BRAIN STIMULATION FOR PD:
COLUMBIA PARKINSON'S SUPPORT GROUP SYMPOSIUM

• Disclosures: None
PARKINSON’S DISEASE

- Affects 0.3% of general population
- Cardinal features
 - Resting tremor
 - Rigidity
 - Bradykinesia
 - Postural instability
PD: □ DA neurons in SNC
Direct Pathway:
Inhibitory activity to GPi

Indirect Pathway:
- Inhibitory activity to GPe
- Inhibitory activity to STN
- Excitation to GPi

Together:
- Inhibitory activity from GPi to thalamus and brainstem
 = Hypokinesis

TREATMENT OPTIONS

- 1) Nothing- Observation

- 2) Medication Only
 - 40% pts develop marked motor “on-off” fluctuations and drug-induced dyskinesias after 5 years of medical treatment*

- 3) Surgery:
 - Targets for therapy:
 - STN vs GPi vs VIM
 - Ablative (permanent)
Ablative (permanent)
- Thermocoagulation
- Gamma Knife
- MRI guided High-Focused Ultrasound

Non- ablative (non-permanent)
- Deep Brain Stimulation
 - Gold standard of treatment for medication failure or intolerant of side effects

HISTORY OF DBS

- Father Functional Neurosurgery, Sir Victor Horsely, 1890s
- Modern stereotactic surgery, Dr. Lars Leksell, 1948
- Modern age of DBS pioneered in 1987 by Benabid et al.
- Approved by US FDA as treatment for PD 2002
A Randomized Trial of Deep-Brain Stimulation for Parkinson’s Disease

Günther Deuschl, M.D., Ph.D., Carmen Schade-Brittinger, Paul Krack, M.D., Ph.D., Jens Vollmann, M.D., Ph.D., Helmut Schöfer, Ph.D., Kai Botzel, M.D., Ph.D., Christine Daniels, M.D., Angela Deutschlander, M.D., Ulrich Dillmann, M.D., Ph.D., Wilhelm Eisner, M.D., Ph.D., Doreen Gruber, M.D., Wolfgang Hamel, M.D., Jan Herzog, M.D., Rüdiger Hlíker, M.D., Ph.D., Stephan Klebe, M.D., Manja Klöß, M.D., Jan Koy, M.D., Martin Krause, M.D., Andreas Kupsch, M.D., Ph.D., Delia Lorenz, M.D., Stefan Lorenz, M.D., Ph.D., H. Maximilian Mehdorn, M.D., Ph.D., Jean Richard Morelingane, M.D., Ph.D., Wolfgang Oertel, M.D., M.D., Marcus O. Pinski, M.D., Heinz Reichmann, M.D., Ph.D., Alexander Reuß, M.S., Gerd-Helge Schneider, M.D., Alfonso Schnitzler, M.D., Ph.D., Ulrich Steude, M.D., Ph.D., Volker Sturm, M.D., Ph.D., Lars Timmermann, M.D., Volker Tronnier, M.D., Ph.D., Thomas Trottenberg, M.D., Lars Wojtecki, M.D., Elisabeth Wolf, M.D., Werner Poesch, M.D., Ph.D., and Jürgen Voges, M.D., Ph.D., for the German Parkinson Study Group, Neurostimulation Section.

- 156 pts
- DBS + meds vs meds only, 6 months
- Greater improvement in PDQ-39 and UPDRS-III w DBS, mean 9.5 and 19.6 pts better
- Improvement in 24-38% in PDQ-39 subscales: motility, ADLs, emotional well being, stigma, bodily discomfort

Bilateral Deep Brain Stimulation vs Best Medical Therapy for Patients With Advanced Parkinson Disease
A Randomized Controlled Trial

Frances M. Weaver, PhD

- 255pts
- DBS + meds vs meds alone, 6 months
- Pts w DBS gained a mean of 4.6h/d of “on” time w/o troublesome dyskinesia
- Significantly improved
Significantly improved
- Motor function
- Quality of life measures
- Phonemic fluency
- Cognitive changes
- Small decrements w DBS
- Not statistically significant

Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease (PD SURG trial): a randomised, open-label trial

Adrian Williams*, Steven Gill, Thelekat Varma, Crispin Jenkinson, Niall Quinn, Rosalind Mitchell, Richard Scott, Natalie Ives, Caroline Rick, Jane Daniels, Smita Patel, Keith Wheatley*, on behalf of the PD SURG Collaborative Group†

Lancet Neurol 2010; 9: 581-91

366 pts
DBS + meds vs meds only, 1-yr
PDQ-39 summary index score
5pts in DBS vs 0.3pts in medical therapy (p=0.001)
PDQ-39 score mobility domain
Mean change pro DBS -8.9
(p=0.0004)
PDQ-39 score ADL domain
Mean change pro DBS -12.4
(p<0.0001)
PDQ-39 score bodily discomfort pain
Mean change pro DBS -7.5
(p=0.004)
SAFETY

<table>
<thead>
<tr>
<th>SAFETY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic changes such as:</td>
</tr>
<tr>
<td>● mania</td>
</tr>
<tr>
<td>● depression</td>
</tr>
<tr>
<td>● apathy</td>
</tr>
<tr>
<td>● panic</td>
</tr>
<tr>
<td>● impulsivity</td>
</tr>
<tr>
<td>● anxiety</td>
</tr>
<tr>
<td>● hallucinations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 2. Adverse Events*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (n = 510)</td>
</tr>
<tr>
<td>No. of Electrodes</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Procedure</td>
</tr>
<tr>
<td>ICH</td>
</tr>
<tr>
<td>Symptomatic ICH</td>
</tr>
<tr>
<td>Hypoglycemic ICH</td>
</tr>
<tr>
<td>SDH</td>
</tr>
<tr>
<td>Air embolus</td>
</tr>
<tr>
<td>Intracranial seizure</td>
</tr>
<tr>
<td>Postoperative seizure</td>
</tr>
<tr>
<td>CSF leak</td>
</tr>
<tr>
<td>Mental status change</td>
</tr>
<tr>
<td>Pneumonia</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Hardware</td>
</tr>
<tr>
<td>Hematoma/seroma</td>
</tr>
<tr>
<td>Lead fracture</td>
</tr>
<tr>
<td>Skin erosion</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Stimulation</td>
</tr>
<tr>
<td>Speech disturbance</td>
</tr>
<tr>
<td>Ballism</td>
</tr>
<tr>
<td>Eyelid apraxia</td>
</tr>
<tr>
<td>Corticospinal effects</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

*CSF, cerebrospinal fluid; GPI, globus pallidus interna; ICH, intracranial hemorrhage; SDH, subdural hematoma; STN, subthalamic nucleus; VIM, ventralis intermediate nucleus.

*Unless otherwise noted, statistical significance was determined using the Fisher exact test.

Statistically significant at P < .05 indicated in bold.
• suicidal ideations
• All likely multifactorial related to:
 • medication changes
 • Neuronal plasticity following DBS
 • Adaptation difficulties
 • Dramatic sociofamilial modification
• These issues need to be screened for and managed with a multidisciplinary approach

PREOPERATIVE EVALUATION

• Movement Disorder Neurologist
 • Initial Evaluation for surgical candidacy
 • Good Candidate:
 • Reasonable cognitive function
 • Adequate dopaminergic response while showing:
 • “On-off” fluctuations
 • Dyskinesia
 • Medication-resistant tremor
 • Realistic goals:
 • Not a cure
 • Likely to improve and remain stable for at least 4 years:
 • Levodopa-responsive symptoms:
 • Dyskinesias
 • Tremor
 • “On-Off” fluctuations
 • Less likely to improve
 • Speech
 • Balance/ Gait
 • Cognition

PREOPERATIVE EVALUATION

- Surgeon
- Primary Medical Physician
 - Medical Clearance
- MRI

STAGE 1: DAY OF OR

- Preop Holding
 - Meet anesthesia
- Frame application then to CT
IN OPERATING ROOM

- Positioned onto OR table
 - Skin steriley prepped and draped
PLANNING

- Administration of local anesthetic in scalp
- Incision
- Burr hole(s)
- Microelectrode recording
• Intra Operative CT
• Placement of Lead w testing

• Intra Operative CT
 ● Confirm placement
• Closure of skin
• Removal of Frame
• Overnight admission into ICU

STAGE 2

• Return to OR ~1 week
 ● Placement of extension leads and generators
• Return to Neurologist in ~2-4 weeks
 ● Initial programming
 ● May need subsequent sessions
LIVING WITH A STIMULATOR

- Handheld programmer
 - Able to turn stimulator off/on
 - May be able to change programmed settings/ adjust strength of stimulation
- Lifespan of generators
 - 5-7 yrs
- Be wary of MRIs
 - May turn stimulator off/on, change settings
- These will not affect generators
 - Cellular phones
 - Pagers
 - Microwaves
 - Security doors
 - Anti-theft sensors
THANK YOU!